660 lines
17 KiB
Go
660 lines
17 KiB
Go
package convolve
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"math"
|
|
"math/cmplx"
|
|
"os"
|
|
"strings"
|
|
|
|
"image/png"
|
|
|
|
"image/color"
|
|
|
|
"path/filepath"
|
|
|
|
"github.com/mjibson/go-dsp/fft"
|
|
"gonum.org/v1/gonum/dsp/fourier"
|
|
"gonum.org/v1/plot"
|
|
"gonum.org/v1/plot/font"
|
|
"gonum.org/v1/plot/plotter"
|
|
"gonum.org/v1/plot/vg"
|
|
"gonum.org/v1/plot/vg/draw"
|
|
"gonum.org/v1/plot/vg/vgimg"
|
|
)
|
|
|
|
// nextPowerOfTwo returns the next power of two >= n
|
|
func nextPowerOfTwo(n int) int {
|
|
p := 1
|
|
for p < n {
|
|
p <<= 1
|
|
}
|
|
return p
|
|
}
|
|
|
|
// Convolve performs FFT-based convolution of two audio signals
|
|
// Deprecated: Use Deconvolve for IR extraction from sweep and recorded signals
|
|
func Convolve(signal1, signal2 []float64) []float64 {
|
|
resultLen := len(signal1) + len(signal2) - 1
|
|
fftLen := nextPowerOfTwo(resultLen)
|
|
|
|
log.Printf("[convolve] signal1: %d, signal2: %d, resultLen: %d, fftLen: %d", len(signal1), len(signal2), resultLen, fftLen)
|
|
|
|
// Zero-pad both signals to fftLen as float64
|
|
x := make([]float64, fftLen)
|
|
copy(x, signal1)
|
|
y := make([]float64, fftLen)
|
|
copy(y, signal2)
|
|
|
|
// FFT
|
|
fft := fourier.NewFFT(fftLen)
|
|
xFreq := fft.Coefficients(nil, x) // []complex128
|
|
yFreq := fft.Coefficients(nil, y) // []complex128
|
|
|
|
log.Printf("[convolve] xFreq length: %d, yFreq length: %d", len(xFreq), len(yFreq))
|
|
|
|
// Multiply in frequency domain
|
|
outFreq := make([]complex128, len(xFreq))
|
|
for i := 0; i < len(xFreq) && i < len(yFreq); i++ {
|
|
outFreq[i] = xFreq[i] * yFreq[i]
|
|
}
|
|
|
|
// Inverse FFT (returns []float64)
|
|
outTime := fft.Sequence(nil, outFreq)
|
|
log.Printf("[convolve] outTime length: %d", len(outTime))
|
|
|
|
// Defensive: avoid index out of range
|
|
copyLen := resultLen
|
|
if len(outTime) < resultLen {
|
|
log.Printf("[convolve] Warning: outTime length (%d) < resultLen (%d), truncating resultLen", len(outTime), resultLen)
|
|
copyLen = len(outTime)
|
|
}
|
|
|
|
result := make([]float64, copyLen)
|
|
copy(result, outTime[:copyLen])
|
|
|
|
return result
|
|
}
|
|
|
|
// Deconvolve extracts the impulse response (IR) from a sweep and its recorded version
|
|
// by dividing the FFT of the recorded by the FFT of the sweep, with regularization.
|
|
func Deconvolve(sweep, recorded []float64) []float64 {
|
|
resultLen := len(recorded)
|
|
fftLen := nextPowerOfTwo(resultLen)
|
|
|
|
log.Printf("[deconvolve] sweep: %d, recorded: %d, resultLen: %d, fftLen: %d", len(sweep), len(recorded), resultLen, fftLen)
|
|
|
|
// Zero-pad both signals to fftLen
|
|
sweepPadded := make([]float64, fftLen)
|
|
recordedPadded := make([]float64, fftLen)
|
|
copy(sweepPadded, sweep)
|
|
copy(recordedPadded, recorded)
|
|
|
|
fft := fourier.NewFFT(fftLen)
|
|
sweepFFT := fft.Coefficients(nil, sweepPadded)
|
|
recordedFFT := fft.Coefficients(nil, recordedPadded)
|
|
|
|
log.Printf("[deconvolve] sweepFFT length: %d, recordedFFT length: %d", len(sweepFFT), len(recordedFFT))
|
|
|
|
// Regularization epsilon to avoid division by zero
|
|
const epsilon = 1e-10
|
|
minLen := len(sweepFFT)
|
|
if len(recordedFFT) < minLen {
|
|
minLen = len(recordedFFT)
|
|
}
|
|
irFFT := make([]complex128, minLen)
|
|
for i := 0; i < minLen; i++ {
|
|
denom := sweepFFT[i]
|
|
if cmplx.Abs(denom) < epsilon {
|
|
denom = complex(epsilon, 0)
|
|
}
|
|
irFFT[i] = recordedFFT[i] / denom
|
|
}
|
|
|
|
irTime := fft.Sequence(nil, irFFT)
|
|
log.Printf("[deconvolve] irTime length: %d", len(irTime))
|
|
|
|
// Defensive: avoid index out of range
|
|
copyLen := resultLen
|
|
if len(irTime) < resultLen {
|
|
log.Printf("[deconvolve] Warning: irTime length (%d) < resultLen (%d), truncating resultLen", len(irTime), resultLen)
|
|
copyLen = len(irTime)
|
|
}
|
|
|
|
result := make([]float64, copyLen)
|
|
copy(result, irTime[:copyLen])
|
|
|
|
return result
|
|
}
|
|
|
|
// Normalize normalizes the audio data to prevent clipping
|
|
// targetPeak is the maximum peak value (e.g., 0.95 for 95% of full scale)
|
|
func Normalize(data []float64, targetPeak float64) []float64 {
|
|
if len(data) == 0 {
|
|
return data
|
|
}
|
|
// Find the maximum absolute value
|
|
maxVal := 0.0
|
|
for _, sample := range data {
|
|
absVal := math.Abs(sample)
|
|
if absVal > maxVal {
|
|
maxVal = absVal
|
|
}
|
|
}
|
|
if maxVal == 0 {
|
|
return data
|
|
}
|
|
// Calculate normalization factor
|
|
normFactor := targetPeak / maxVal
|
|
// Apply normalization
|
|
normalized := make([]float64, len(data))
|
|
for i, sample := range data {
|
|
normalized[i] = sample * normFactor
|
|
}
|
|
return normalized
|
|
}
|
|
|
|
// TrimSilence removes leading and trailing silence from the audio data
|
|
// threshold is the amplitude threshold below which samples are considered silence
|
|
func TrimSilence(data []float64, threshold float64) []float64 {
|
|
if len(data) == 0 {
|
|
return data
|
|
}
|
|
// Find start (first non-silent sample)
|
|
start := 0
|
|
for i, sample := range data {
|
|
if math.Abs(sample) > threshold {
|
|
start = i
|
|
break
|
|
}
|
|
}
|
|
// Find end (last non-silent sample)
|
|
end := len(data) - 1
|
|
for i := len(data) - 1; i >= 0; i-- {
|
|
if math.Abs(data[i]) > threshold {
|
|
end = i
|
|
break
|
|
}
|
|
}
|
|
if start >= end {
|
|
return []float64{}
|
|
}
|
|
return data[start : end+1]
|
|
}
|
|
|
|
// TrimOrPad trims or zero-pads the data to the specified number of samples
|
|
func TrimOrPad(data []float64, targetSamples int) []float64 {
|
|
if len(data) == targetSamples {
|
|
return data
|
|
} else if len(data) > targetSamples {
|
|
return data[:targetSamples]
|
|
} else {
|
|
out := make([]float64, targetSamples)
|
|
copy(out, data)
|
|
// zero-padding is default
|
|
return out
|
|
}
|
|
}
|
|
|
|
// padOrTruncate ensures a slice is exactly n elements long
|
|
func padOrTruncate[T any](in []T, n int) []T {
|
|
if len(in) == n {
|
|
return in
|
|
} else if len(in) > n {
|
|
return in[:n]
|
|
}
|
|
out := make([]T, n)
|
|
copy(out, in)
|
|
return out
|
|
}
|
|
|
|
// Helper to reconstruct full Hermitian spectrum from N/2+1 real FFT
|
|
func hermitianSymmetric(fullLen int, halfSpec []complex128) []complex128 {
|
|
full := make([]complex128, fullLen)
|
|
N := fullLen
|
|
// DC
|
|
full[0] = halfSpec[0]
|
|
// Positive freqs
|
|
for k := 1; k < N/2; k++ {
|
|
full[k] = halfSpec[k]
|
|
full[N-k] = cmplx.Conj(halfSpec[k])
|
|
}
|
|
// Nyquist (if even)
|
|
if N%2 == 0 {
|
|
full[N/2] = halfSpec[N/2]
|
|
}
|
|
return full
|
|
}
|
|
|
|
// MinimumPhaseTransform using go-dsp/fft for full complex FFT/IFFT
|
|
func MinimumPhaseTransform(ir []float64) []float64 {
|
|
if len(ir) == 0 {
|
|
return ir
|
|
}
|
|
|
|
origLen := len(ir)
|
|
fftLen := nextPowerOfTwo(origLen)
|
|
padded := padOrTruncate(ir, fftLen)
|
|
log.Printf("[MPT] fftLen: %d, padded len: %d", fftLen, len(padded))
|
|
|
|
// Convert to complex
|
|
signal := make([]complex128, fftLen)
|
|
for i, v := range padded {
|
|
signal[i] = complex(v, 0)
|
|
}
|
|
|
|
// FFT
|
|
X := fft.FFT(signal)
|
|
|
|
// Log-magnitude spectrum (complex)
|
|
logMag := make([]complex128, fftLen)
|
|
for i, v := range X {
|
|
mag := cmplx.Abs(v)
|
|
if mag < 1e-12 {
|
|
mag = 1e-12
|
|
}
|
|
logMag[i] = complex(math.Log(mag), 0)
|
|
}
|
|
|
|
// IFFT to get real cepstrum
|
|
cepstrumC := fft.IFFT(logMag)
|
|
|
|
// Minimum phase cepstrum
|
|
minPhaseCep := make([]complex128, fftLen)
|
|
minPhaseCep[0] = cepstrumC[0] // DC
|
|
for i := 1; i < fftLen/2; i++ {
|
|
minPhaseCep[i] = 2 * cepstrumC[i]
|
|
}
|
|
if fftLen%2 == 0 {
|
|
minPhaseCep[fftLen/2] = cepstrumC[fftLen/2] // Nyquist (if even)
|
|
}
|
|
// Negative quefrency: zero (already zero by default)
|
|
|
|
// FFT of minimum phase cepstrum
|
|
minPhaseSpec := fft.FFT(minPhaseCep)
|
|
|
|
// Exponentiate to get minimum phase spectrum
|
|
for i := range minPhaseSpec {
|
|
minPhaseSpec[i] = cmplx.Exp(minPhaseSpec[i])
|
|
}
|
|
|
|
// IFFT to get minimum phase IR
|
|
minPhaseIR := fft.IFFT(minPhaseSpec)
|
|
|
|
// Return the real part, original length
|
|
result := make([]float64, origLen)
|
|
for i := range result {
|
|
result[i] = real(minPhaseIR[i])
|
|
}
|
|
return result
|
|
}
|
|
|
|
// realSlice extracts the real part of a []complex128 as []float64
|
|
func realSlice(in []complex128) []float64 {
|
|
out := make([]float64, len(in))
|
|
for i, v := range in {
|
|
out[i] = real(v)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// Resample resamples audio data from one sample rate to another using linear interpolation
|
|
func Resample(data []float64, fromSampleRate, toSampleRate int) []float64 {
|
|
if fromSampleRate == toSampleRate {
|
|
return data
|
|
}
|
|
|
|
// Calculate the resampling ratio
|
|
ratio := float64(toSampleRate) / float64(fromSampleRate)
|
|
newLength := int(float64(len(data)) * ratio)
|
|
|
|
if newLength == 0 {
|
|
return []float64{}
|
|
}
|
|
|
|
result := make([]float64, newLength)
|
|
|
|
for i := 0; i < newLength; i++ {
|
|
// Calculate the position in the original data
|
|
pos := float64(i) / ratio
|
|
|
|
// Get the integer and fractional parts
|
|
posInt := int(pos)
|
|
posFrac := pos - float64(posInt)
|
|
|
|
// Linear interpolation
|
|
if posInt >= len(data)-1 {
|
|
// Beyond the end of the data, use the last sample
|
|
result[i] = data[len(data)-1]
|
|
} else {
|
|
// Interpolate between two samples
|
|
sample1 := data[posInt]
|
|
sample2 := data[posInt+1]
|
|
result[i] = sample1 + posFrac*(sample2-sample1)
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// FadeOutLinear applies a linear fade-out to the last fadeSamples of the data.
|
|
// fadeSamples is the number of samples over which to fade to zero.
|
|
func FadeOutLinear(data []float64, fadeSamples int) []float64 {
|
|
if fadeSamples <= 0 || len(data) == 0 {
|
|
return data
|
|
}
|
|
if fadeSamples > len(data) {
|
|
fadeSamples = len(data)
|
|
}
|
|
out := make([]float64, len(data))
|
|
copy(out, data)
|
|
start := len(data) - fadeSamples
|
|
for i := start; i < len(data); i++ {
|
|
fade := float64(len(data)-i) / float64(fadeSamples)
|
|
out[i] *= fade
|
|
}
|
|
return out
|
|
}
|
|
|
|
// ApplyLowpassButterworth applies a 2nd-order Butterworth low-pass filter to the data.
|
|
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
|
|
func ApplyLowpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
|
|
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
|
|
return data
|
|
}
|
|
// Biquad coefficients
|
|
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
|
|
cosw0 := math.Cos(w0)
|
|
sinw0 := math.Sin(w0)
|
|
Q := 1.0 / math.Sqrt(2) // Butterworth Q
|
|
alpha := sinw0 / (2 * Q)
|
|
|
|
b0 := (1 - cosw0) / 2
|
|
b1 := 1 - cosw0
|
|
b2 := (1 - cosw0) / 2
|
|
a0 := 1 + alpha
|
|
a1 := -2 * cosw0
|
|
a2 := 1 - alpha
|
|
|
|
// Normalize
|
|
b0 /= a0
|
|
b1 /= a0
|
|
b2 /= a0
|
|
a1 /= a0
|
|
a2 /= a0
|
|
|
|
// Apply filter (Direct Form I)
|
|
out := make([]float64, len(data))
|
|
var x1, x2, y1, y2 float64
|
|
for i := 0; i < len(data); i++ {
|
|
x0 := data[i]
|
|
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
|
|
out[i] = y0
|
|
x2 = x1
|
|
x1 = x0
|
|
y2 = y1
|
|
y1 = y0
|
|
}
|
|
return out
|
|
}
|
|
|
|
// ApplyHighpassButterworth applies a 2nd-order Butterworth high-pass filter to the data.
|
|
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
|
|
func ApplyHighpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
|
|
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
|
|
return data
|
|
}
|
|
// Biquad coefficients
|
|
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
|
|
cosw0 := math.Cos(w0)
|
|
sinw0 := math.Sin(w0)
|
|
Q := 1.0 / math.Sqrt(2) // Butterworth Q
|
|
alpha := sinw0 / (2 * Q)
|
|
|
|
b0 := (1 + cosw0) / 2
|
|
b1 := -(1 + cosw0)
|
|
b2 := (1 + cosw0) / 2
|
|
a0 := 1 + alpha
|
|
a1 := -2 * cosw0
|
|
a2 := 1 - alpha
|
|
|
|
// Normalize
|
|
b0 /= a0
|
|
b1 /= a0
|
|
b2 /= a0
|
|
a1 /= a0
|
|
a2 /= a0
|
|
|
|
// Apply filter (Direct Form I)
|
|
out := make([]float64, len(data))
|
|
var x1, x2, y1, y2 float64
|
|
for i := 0; i < len(data); i++ {
|
|
x0 := data[i]
|
|
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
|
|
out[i] = y0
|
|
x2 = x1
|
|
x1 = x0
|
|
y2 = y1
|
|
y1 = y0
|
|
}
|
|
return out
|
|
}
|
|
|
|
// CascadeLowcut applies the low-cut (high-pass) filter multiple times for steeper slopes.
|
|
// slopeDb: 12, 24, 36, ... (dB/octave)
|
|
func CascadeLowcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
|
|
if slopeDb < 12 {
|
|
slopeDb = 12
|
|
}
|
|
n := slopeDb / 12
|
|
out := data
|
|
for i := 0; i < n; i++ {
|
|
out = ApplyHighpassButterworth(out, sampleRate, cutoffHz)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// CascadeHighcut applies the high-cut (low-pass) filter multiple times for steeper slopes.
|
|
// slopeDb: 12, 24, 36, ... (dB/octave)
|
|
func CascadeHighcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
|
|
if slopeDb < 12 {
|
|
slopeDb = 12
|
|
}
|
|
n := slopeDb / 12
|
|
out := data
|
|
for i := 0; i < n; i++ {
|
|
out = ApplyLowpassButterworth(out, sampleRate, cutoffHz)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// PlotIR plots the frequency response (magnitude in dB vs. frequency in Hz) of the IR to ir_plot.png
|
|
func PlotIR(ir []float64, sampleRate int, irFileName string) error {
|
|
if len(ir) == 0 {
|
|
return nil
|
|
}
|
|
// Use only the first 8192 samples of the IR for plotting
|
|
windowLen := 8192
|
|
if len(ir) < windowLen {
|
|
windowLen = len(ir)
|
|
}
|
|
irWin := ir[:windowLen]
|
|
X := fft.FFTReal(irWin)
|
|
// Plot from 20 Hz up to 20kHz, include every bin
|
|
var plotPts plotter.XYs
|
|
var minDb float64 = 1e9
|
|
var maxDb float64 = -1e9
|
|
var minDbFreq float64
|
|
freqBins := windowLen / 2
|
|
for i := 1; i < freqBins; i++ {
|
|
freq := float64(i) * float64(sampleRate) / float64(windowLen)
|
|
if freq < 20.0 {
|
|
continue
|
|
}
|
|
if freq > 20000.0 {
|
|
break
|
|
}
|
|
mag := cmplx.Abs(X[i])
|
|
if mag < 1e-12 {
|
|
mag = 1e-12
|
|
}
|
|
db := 20 * math.Log10(mag)
|
|
plotPts = append(plotPts, plotter.XY{X: freq, Y: db})
|
|
if db < minDb {
|
|
minDb = db
|
|
minDbFreq = freq
|
|
}
|
|
if db > maxDb {
|
|
maxDb = db
|
|
}
|
|
}
|
|
fmt.Printf("[PlotIR] minDb in plotted range: %.2f dB at %.2f Hz\n", minDb, minDbFreq)
|
|
p := plot.New()
|
|
p.Title.Text = "IR Frequency Response (dB, 2048-sample window)"
|
|
p.X.Label.Text = "Frequency (Hz)"
|
|
p.Y.Label.Text = "Magnitude (dB)"
|
|
p.X.Scale = plot.LogScale{}
|
|
p.X.Tick.Marker = plot.TickerFunc(func(min, max float64) []plot.Tick {
|
|
ticks := []float64{20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}
|
|
labels := []string{"20", "50", "100", "200", "500", "1k", "2k", "5k", "10k", "20k"}
|
|
var result []plot.Tick
|
|
for i, v := range ticks {
|
|
if v >= min && v <= max {
|
|
result = append(result, plot.Tick{Value: v, Label: labels[i]})
|
|
}
|
|
}
|
|
return result
|
|
})
|
|
line, err := plotter.NewLine(plotPts)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// Set line color to blue
|
|
line.Color = color.RGBA{R: 30, G: 100, B: 220, A: 255}
|
|
p.Add(line)
|
|
// Find minimum dB value between 20 Hz and 50 Hz for y-axis anchor
|
|
minDb2050 := 1e9
|
|
for i := 1; i < freqBins; i++ {
|
|
freq := float64(i) * float64(sampleRate) / float64(windowLen)
|
|
if freq < 20.0 {
|
|
continue
|
|
}
|
|
if freq > 50.0 {
|
|
break
|
|
}
|
|
mag := cmplx.Abs(X[i])
|
|
if mag < 1e-12 {
|
|
mag = 1e-12
|
|
}
|
|
db := 20 * math.Log10(mag)
|
|
if db < minDb2050 {
|
|
minDb2050 = db
|
|
}
|
|
}
|
|
p.Y.Min = minDb2050
|
|
p.Y.Max = math.Ceil(maxDb)
|
|
p.X.Min = 20.0
|
|
p.X.Max = 20000.0
|
|
|
|
// --- Time-aligned waveform plot ---
|
|
p2 := plot.New()
|
|
p2.Title.Text = "IR Waveform (Time Aligned)"
|
|
p2.X.Label.Text = "Time (ms)"
|
|
p2.Y.Label.Text = "Amplitude"
|
|
// Prepare waveform data (only first 10ms)
|
|
var pts plotter.XYs
|
|
maxTimeMs := 10.0
|
|
for i := 0; i < windowLen; i++ {
|
|
t := float64(i) * 1000.0 / float64(sampleRate) // ms
|
|
if t > maxTimeMs {
|
|
break
|
|
}
|
|
pts = append(pts, plotter.XY{X: t, Y: irWin[i]})
|
|
}
|
|
wline, err := plotter.NewLine(pts)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
wline.Color = color.RGBA{R: 30, G: 100, B: 220, A: 255}
|
|
p2.Add(wline)
|
|
p2.X.Min = 0
|
|
p2.X.Max = maxTimeMs
|
|
// Y range auto
|
|
|
|
// --- Compose both plots vertically ---
|
|
const width = 6 * vg.Inch
|
|
const height = 8 * vg.Inch // increased height for frequency diagram
|
|
img := vgimg.New(width, height+1*vg.Inch) // extra space for logo/headline
|
|
dc := draw.New(img)
|
|
|
|
// Draw logo at the top left, headline to the right, IR filename below
|
|
logoPath := "assets/logo.png"
|
|
logoW := 2.4 * vg.Inch // doubled size
|
|
logoH := 0.68 * vg.Inch // doubled size
|
|
logoX := 0.3 * vg.Inch
|
|
logoY := height + 0.2*vg.Inch // move logo down by an additional ~10px
|
|
logoDrawn := false
|
|
f, err := os.Open(logoPath)
|
|
if err == nil {
|
|
defer f.Close()
|
|
logoImg, err := png.Decode(f)
|
|
if err == nil {
|
|
rect := vg.Rectangle{
|
|
Min: vg.Point{X: logoX, Y: logoY},
|
|
Max: vg.Point{X: logoX + logoW, Y: logoY + logoH},
|
|
}
|
|
dc.DrawImage(rect, logoImg)
|
|
logoDrawn = true
|
|
}
|
|
}
|
|
// Draw headline (bold, larger) to the right of the logo
|
|
headline := "Valhallir Deconvolver IR Analysis"
|
|
fntSize := vg.Points(14) // Same as IR filename
|
|
if logoDrawn {
|
|
headlineX := logoX + logoW + 0.3*vg.Inch
|
|
headlineY := logoY + logoH - vg.Points(16) - vg.Points(5) // move headline up by ~10px
|
|
boldFont := plot.DefaultFont
|
|
boldFont.Weight = 3 // font.WeightBold is 3 in gonum/plot/font
|
|
boldFace := font.DefaultCache.Lookup(boldFont, fntSize)
|
|
dc.SetColor(color.Black)
|
|
dc.FillString(boldFace, vg.Point{X: headlineX, Y: headlineY}, headline)
|
|
// Draw IR filename below headline, left-aligned, standard font
|
|
fileLabel := "IR-File: " + filepath.Base(irFileName)
|
|
fileY := headlineY - fntSize - vg.Points(6)
|
|
fileFace := font.DefaultCache.Lookup(plot.DefaultFont, vg.Points(10))
|
|
dc.FillString(fileFace, vg.Point{X: headlineX, Y: fileY}, fileLabel)
|
|
}
|
|
|
|
// Custom tile arrangement: frequency diagram gets more height, waveform gets less
|
|
tiles := draw.Tiles{
|
|
Rows: 2,
|
|
Cols: 1,
|
|
PadX: vg.Millimeter,
|
|
PadY: 20 * vg.Millimeter, // more space between plots to emphasize frequency diagram
|
|
PadTop: vg.Points(15), // move diagrams down by ~20px
|
|
}
|
|
|
|
// Offset the plots down by 1 inch to make space for logo/headline
|
|
imgPlots := vgimg.New(width, height)
|
|
dcPlots := draw.New(imgPlots)
|
|
canvases := plot.Align([][]*plot.Plot{{p}, {p2}}, tiles, dcPlots)
|
|
p.Draw(canvases[0][0])
|
|
p2.Draw(canvases[1][0])
|
|
dc.DrawImage(vg.Rectangle{Min: vg.Point{X: 0, Y: 0}, Max: vg.Point{X: width, Y: height}}, imgPlots.Image())
|
|
|
|
// Save as PNG in the same directory as the IR file
|
|
irDir := filepath.Dir(irFileName)
|
|
irBase := filepath.Base(irFileName)
|
|
irNameWithoutExt := strings.TrimSuffix(irBase, filepath.Ext(irBase))
|
|
plotFileName := filepath.Join(irDir, irNameWithoutExt+".png")
|
|
|
|
f, err = os.Create(plotFileName)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer f.Close()
|
|
_, err = vgimg.PngCanvas{Canvas: img}.WriteTo(f)
|
|
return err
|
|
}
|