Initial commit. Complete first version of the deconvolver

This commit is contained in:
Bastian Bührig
2025-07-11 08:55:27 +02:00
commit a2f510e062
12 changed files with 977 additions and 0 deletions

237
README.md Normal file
View File

@@ -0,0 +1,237 @@
# Valhallir Convoluter
A CLI tool for processing WAV files to generate impulse responses (IR) from sweep and recorded WAV files, designed for guitar speaker IR creation.
## Features
- **Fast FFT-based deconvolution** for accurate IR extraction
- **Automatic input conversion:** Accepts any WAV sample rate, bit depth, or channel count
- **Optional output IR length:** Specify output IR length in milliseconds with --length-ms
- **96kHz 24-bit WAV file support** for high-quality audio processing
- **Multiple output formats** with configurable sample rates and bit depths
- **Minimum Phase Transform (MPT)** option for reduced latency IRs
- **Automatic silence trimming** and normalization
- **Modular design** with separate packages for WAV I/O and convolution
- **Robust error handling** and validation
## Installation
```sh
# Clone the repository
git clone <repository-url>
cd valhallir-convoluter
# Build the application
go build -o valhallir-convoluter
```
## Usage
### Basic IR Generation
Generate a standard impulse response from sweep and recorded files (any WAV format):
```sh
./valhallir-convoluter --sweep sweep.wav --recorded recorded.wav --output ir.wav
```
### With Minimum Phase Transform
Generate both regular and minimum phase IRs:
```sh
./valhallir-convoluter --sweep sweep.wav --recorded recorded.wav --output ir.wav --mpt
```
This creates:
- `ir.wav` - Standard impulse response
- `ir_mpt.wav` - Minimum phase transform version
### Limit Output IR Length
Trim or zero-pad the output IR to a specific length (in milliseconds):
```sh
./valhallir-convoluter --sweep sweep.wav --recorded recorded.wav --output ir.wav --length-ms 100
```
This will ensure the output IR is exactly 100 ms long (trimming or zero-padding as needed).
### Different Output Formats
Generate IRs in different sample rates and bit depths:
```sh
# 44kHz 16-bit (CD quality)
./valhallir-convoluter \
--sweep sweep.wav \
--recorded recorded.wav \
--output ir_cd.wav \
--sample-rate 44100 \
--bit-depth 16
# 48kHz 32-bit (studio quality)
./valhallir-convoluter \
--sweep sweep.wav \
--recorded recorded.wav \
--output ir_studio.wav \
--sample-rate 48000 \
--bit-depth 32 \
--mpt
# 96kHz 24-bit (high resolution)
./valhallir-convoluter \
--sweep sweep.wav \
--recorded recorded.wav \
--output ir_hires.wav \
--sample-rate 96000 \
--bit-depth 24
```
### Advanced Options
```sh
./valhallir-convoluter \
--sweep sweep.wav \
--recorded recorded.wav \
--output ir.wav \
--mpt \
--sample-rate 48000 \
--bit-depth 24 \
--normalize 0.95 \
--trim-threshold 0.001 \
--length-ms 50
```
## Command Line Options
| Flag | Description | Default | Required |
|------|-------------|---------|----------|
| `--sweep` | Path to sweep WAV file (any format) | - | Yes |
| `--recorded` | Path to recorded WAV file (any format) | - | Yes |
| `--output` | Path to output IR WAV file | - | Yes |
| `--mpt` | Generate minimum phase transform IR | false | No |
| `--sample-rate` | Output sample rate (44, 48, 88, 96 kHz) | 96000 | No |
| `--bit-depth` | Output bit depth (16, 24, 32 bit) | 24 | No |
| `--normalize` | Normalize output to peak value (0.0-1.0) | 0.95 | No |
| `--trim-threshold` | Silence threshold for trimming (0.0-1.0) | 0.001 | No |
| `--length-ms` | Output IR length in milliseconds (trim or zero-pad) | - | No |
## File Requirements
### Input Files
- **Format:** Any uncompressed WAV file
- **Sample Rate:** Any (will be automatically resampled to 96kHz for processing)
- **Bit Depth:** Any (16, 24, 32-bit supported; will be converted to float64 internally)
- **Channels:** Any (mono, stereo, or multi-channel; will be converted to mono by averaging channels)
### Output Files
- **Format:** WAV files
- **Sample Rate:** 44kHz, 48kHz, 88kHz, or 96kHz (set by `--sample-rate`)
- **Bit Depth:** 16-bit, 24-bit, or 32-bit (set by `--bit-depth`)
- **Channels:** Mono (1 channel)
## Technical Details
### Input Conversion
- All input files are automatically converted to mono, 96kHz, float64 for processing
- Stereo or multi-channel files are averaged to mono
- Sample rates are resampled to 96kHz using linear interpolation
- Bit depths are normalized to float64
### Output IR Length
- If `--length-ms` is set, the output IR (and MPT IR) will be trimmed or zero-padded to the specified length in milliseconds
- If not set, the full IR is used
### Deconvolution Process
1. **FFT-based deconvolution** of recorded signal by sweep signal
2. **Regularization** to prevent division by zero
3. **Silence trimming** to remove leading/trailing silence
4. **Normalization** to prevent clipping
### Minimum Phase Transform
- Uses **real cepstrum method** for accurate minimum phase conversion
- **Reduces latency** by minimizing pre-ringing
- **Maintains frequency response** while optimizing phase characteristics
- **Suitable for real-time applications** like guitar amp modeling
### Output Format Options
- **Sample Rates:** 44.1kHz (CD), 48kHz (studio), 88.2kHz, 96kHz (high-res)
- **Bit Depths:** 16-bit (CD), 24-bit (studio), 32-bit (high-res)
- **File Sizes:** 16-bit ≈ 50% smaller, 32-bit ≈ 33% larger than 24-bit
## Dependencies
- [urfave/cli](https://github.com/urfave/cli) - CLI framework
- [go-audio/wav](https://github.com/go-audio/wav) - WAV file I/O
- [go-dsp/fft](https://github.com/mjibson/go-dsp) - FFT implementation
- [gonum](https://gonum.org/) - Numerical computing
## Examples
### Guitar Cabinet IR (CD Quality)
```sh
# Generate IR from guitar cab sweep and recording (any WAV format), 50ms length
./valhallir-convoluter \
--sweep guitar_cab_sweep.wav \
--recorded guitar_cab_recorded.wav \
--output cab_ir_cd.wav \
--sample-rate 44100 \
--bit-depth 16 \
--length-ms 50 \
--mpt
```
### Room Acoustics IR (Studio Quality)
```sh
# Generate room impulse response
./valhallir-convoluter \
--sweep room_sweep.wav \
--recorded room_recorded.wav \
--output room_ir_studio.wav \
--sample-rate 48000 \
--bit-depth 24
```
### High-Resolution IR (Mastering)
```sh
# Generate high-resolution IR for mastering
./valhallir-convoluter \
--sweep mastering_sweep.wav \
--recorded mastering_recorded.wav \
--output mastering_ir.wav \
--sample-rate 96000 \
--bit-depth 32 \
--length-ms 100 \
--mpt
```
## Troubleshooting
### Common Issues
**"File is not a valid WAV file" error**
- Check that files are uncompressed WAV format
- Avoid MP3, FLAC, or other compressed formats
**"Invalid sample rate" error (output)**
- Use only supported output sample rates: 44100, 48000, 88200, 96000
- Check the `--sample-rate` flag value
**"Invalid bit depth" error (output)**
- Use only supported output bit depths: 16, 24, 32
- Check the `--bit-depth` flag value
### Performance
- Processing time depends on file length
- FFT-based deconvolution is much faster than time-domain methods
- Large files (>1GB) may take several minutes
- Higher bit depths require more memory but don't significantly affect processing time
## License
[Add your license information here]
## Contributing
[Add contribution guidelines here]

15
go.mod Normal file
View File

@@ -0,0 +1,15 @@
module valhallir-convoluter
go 1.24.1
require (
github.com/cpuguy83/go-md2man/v2 v2.0.7 // indirect
github.com/go-audio/audio v1.0.0 // indirect
github.com/go-audio/riff v1.0.0 // indirect
github.com/go-audio/wav v1.1.0 // indirect
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
github.com/urfave/cli/v2 v2.27.7 // indirect
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 // indirect
gonum.org/v1/gonum v0.13.0 // indirect
)

18
go.sum Normal file
View File

@@ -0,0 +1,18 @@
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
github.com/go-audio/riff v1.0.0 h1:d8iCGbDvox9BfLagY94fBynxSPHO80LmZCaOsmKxokA=
github.com/go-audio/riff v1.0.0/go.mod h1:l3cQwc85y79NQFCRB7TiPoNiaijp6q8Z0Uv38rVG498=
github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12 h1:dd7vnTDfjtwCETZDrRe+GPYNLA1jBtbZeyfyE8eZCyk=
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12/go.mod h1:i/KKcxEWEO8Yyl11DYafRPKOPVYTrhxiTRigjtEEXZU=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 h1:gEOO8jv9F4OT7lGCjxCBTO/36wtF6j2nSip77qHd4x4=
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1/go.mod h1:Ohn+xnUBiLI6FVj/9LpzZWtj1/D6lUovWYBkxHVV3aM=
gonum.org/v1/gonum v0.13.0 h1:a0T3bh+7fhRyqeNbiC3qVHYmkiQgit3wnNan/2c0HMM=
gonum.org/v1/gonum v0.13.0/go.mod h1:/WPYRckkfWrhWefxyYTfrTtQR0KH4iyHNuzxqXAKyAU=

189
main.go Normal file
View File

@@ -0,0 +1,189 @@
package main
import (
"fmt"
"log"
"os"
"valhallir-convoluter/pkg/convolve"
"valhallir-convoluter/pkg/wav"
"github.com/urfave/cli/v2"
)
func main() {
app := &cli.App{
Name: "valhallir-convoluter",
Usage: "Convolve sweep and recorded WAV files to create impulse responses",
Flags: []cli.Flag{
&cli.StringFlag{
Name: "sweep",
Usage: "Path to the sweep WAV file (96kHz 24bit)",
Required: true,
},
&cli.StringFlag{
Name: "recorded",
Usage: "Path to the recorded WAV file (96kHz 24bit)",
Required: true,
},
&cli.StringFlag{
Name: "output",
Usage: "Path to the output IR WAV file (96kHz 24bit)",
Required: true,
},
&cli.BoolFlag{
Name: "mpt",
Usage: "Generate minimum phase transform IR in addition to regular IR",
},
&cli.IntFlag{
Name: "sample-rate",
Usage: "Output sample rate (44, 48, 88, 96 kHz)",
Value: 96000,
},
&cli.IntFlag{
Name: "bit-depth",
Usage: "Output bit depth (16, 24, 32 bit)",
Value: 24,
},
&cli.Float64Flag{
Name: "normalize",
Usage: "Normalize output to this peak value (0.0-1.0, default 0.95)",
Value: 0.95,
},
&cli.Float64Flag{
Name: "trim-threshold",
Usage: "Silence threshold for trimming (0.0-1.0, default 0.001)",
Value: 0.001,
},
&cli.Float64Flag{
Name: "length-ms",
Usage: "Optional: Output IR length in milliseconds (will trim or zero-pad as needed)",
},
},
Action: func(c *cli.Context) error {
// Read sweep WAV file
sweepData, err := wav.ReadWAVFile(c.String("sweep"))
if err != nil {
return err
}
// Read recorded WAV file
recordedData, err := wav.ReadWAVFile(c.String("recorded"))
if err != nil {
return err
}
log.Printf("Sweep: %d samples, %d channels", len(sweepData.PCMData), sweepData.Channels)
log.Printf("Recorded: %d samples, %d channels", len(recordedData.PCMData), recordedData.Channels)
log.Println("Performing deconvolution...")
ir := convolve.Deconvolve(sweepData.PCMData, recordedData.PCMData)
log.Printf("Deconvolution result: %d samples", len(ir))
log.Println("Trimming silence...")
ir = convolve.TrimSilence(ir, 1e-5)
log.Printf("After trimming: %d samples", len(ir))
log.Println("Normalizing...")
ir = convolve.Normalize(ir, c.Float64("normalize"))
log.Printf("Final IR: %d samples", len(ir))
// Validate output format options
sampleRate := c.Int("sample-rate")
bitDepth := c.Int("bit-depth")
// Validate sample rate
validSampleRates := []int{44100, 48000, 88200, 96000}
validSampleRate := false
for _, sr := range validSampleRates {
if sampleRate == sr {
validSampleRate = true
break
}
}
if !validSampleRate {
return fmt.Errorf("invalid sample rate: %d. Valid options: %v", sampleRate, validSampleRates)
}
// Validate bit depth
validBitDepths := []int{16, 24, 32}
validBitDepth := false
for _, bd := range validBitDepths {
if bitDepth == bd {
validBitDepth = true
break
}
}
if !validBitDepth {
return fmt.Errorf("invalid bit depth: %d. Valid options: %v", bitDepth, validBitDepths)
}
// Resample IR to target sample rate if different from input (96kHz)
targetSampleRate := sampleRate
if targetSampleRate != 96000 {
log.Printf("Resampling IR from 96kHz to %dHz...", targetSampleRate)
ir = convolve.Resample(ir, 96000, targetSampleRate)
log.Printf("Resampled IR: %d samples", len(ir))
}
// Trim or pad IR to requested length if --length-ms is set
lengthMs := c.Float64("length-ms")
if lengthMs > 0 {
targetSamples := int(float64(targetSampleRate) * lengthMs / 1000.0)
log.Printf("Trimming or padding IR to %d samples (%.2f ms)...", targetSamples, lengthMs)
ir = convolve.TrimOrPad(ir, targetSamples)
}
// Write regular IR
log.Printf("Writing IR to: %s (%dHz, %d-bit WAV)", c.String("output"), sampleRate, bitDepth)
if err := wav.WriteWAVFileWithOptions(c.String("output"), ir, sampleRate, bitDepth); err != nil {
return err
}
// Generate MPT IR if requested
if c.Bool("mpt") {
log.Println("Generating minimum phase transform...")
// Use the original 96kHz IR for MPT generation
originalIR := convolve.Deconvolve(sweepData.PCMData, recordedData.PCMData)
originalIR = convolve.TrimSilence(originalIR, 1e-5)
mptIR := convolve.MinimumPhaseTransform(originalIR)
mptIR = convolve.Normalize(mptIR, c.Float64("normalize"))
log.Printf("MPT IR: %d samples", len(mptIR))
// Resample MPT IR to target sample rate if different from input (96kHz)
if targetSampleRate != 96000 {
log.Printf("Resampling MPT IR from 96kHz to %dHz...", targetSampleRate)
mptIR = convolve.Resample(mptIR, 96000, targetSampleRate)
log.Printf("Resampled MPT IR: %d samples", len(mptIR))
}
// Trim or pad MPT IR to requested length if --length-ms is set
if lengthMs > 0 {
targetSamples := int(float64(targetSampleRate) * lengthMs / 1000.0)
log.Printf("Trimming or padding MPT IR to %d samples (%.2f ms)...", targetSamples, lengthMs)
mptIR = convolve.TrimOrPad(mptIR, targetSamples)
}
// Generate MPT output filename
outputPath := c.String("output")
if len(outputPath) > 4 && outputPath[len(outputPath)-4:] == ".wav" {
outputPath = outputPath[:len(outputPath)-4]
}
mptOutputPath := outputPath + "_mpt.wav"
log.Printf("Writing MPT IR to: %s (%dHz, %d-bit WAV)", mptOutputPath, sampleRate, bitDepth)
if err := wav.WriteWAVFileWithOptions(mptOutputPath, mptIR, sampleRate, bitDepth); err != nil {
return err
}
log.Println("Minimum phase transform IR generated successfully!")
}
log.Println("Impulse response generated successfully!")
return nil
},
}
if err := app.Run(os.Args); err != nil {
log.Fatal(err)
}
}

324
pkg/convolve/convolve.go Normal file
View File

@@ -0,0 +1,324 @@
package convolve
import (
"log"
"math"
"math/cmplx"
"github.com/mjibson/go-dsp/fft"
"gonum.org/v1/gonum/dsp/fourier"
)
// nextPowerOfTwo returns the next power of two >= n
func nextPowerOfTwo(n int) int {
p := 1
for p < n {
p <<= 1
}
return p
}
// Convolve performs FFT-based convolution of two audio signals
// Deprecated: Use Deconvolve for IR extraction from sweep and recorded signals
func Convolve(signal1, signal2 []float64) []float64 {
resultLen := len(signal1) + len(signal2) - 1
fftLen := nextPowerOfTwo(resultLen)
log.Printf("[convolve] signal1: %d, signal2: %d, resultLen: %d, fftLen: %d", len(signal1), len(signal2), resultLen, fftLen)
// Zero-pad both signals to fftLen as float64
x := make([]float64, fftLen)
copy(x, signal1)
y := make([]float64, fftLen)
copy(y, signal2)
// FFT
fft := fourier.NewFFT(fftLen)
xFreq := fft.Coefficients(nil, x) // []complex128
yFreq := fft.Coefficients(nil, y) // []complex128
log.Printf("[convolve] xFreq length: %d, yFreq length: %d", len(xFreq), len(yFreq))
// Multiply in frequency domain
outFreq := make([]complex128, len(xFreq))
for i := 0; i < len(xFreq) && i < len(yFreq); i++ {
outFreq[i] = xFreq[i] * yFreq[i]
}
// Inverse FFT (returns []float64)
outTime := fft.Sequence(nil, outFreq)
log.Printf("[convolve] outTime length: %d", len(outTime))
// Defensive: avoid index out of range
copyLen := resultLen
if len(outTime) < resultLen {
log.Printf("[convolve] Warning: outTime length (%d) < resultLen (%d), truncating resultLen", len(outTime), resultLen)
copyLen = len(outTime)
}
result := make([]float64, copyLen)
copy(result, outTime[:copyLen])
return result
}
// Deconvolve extracts the impulse response (IR) from a sweep and its recorded version
// by dividing the FFT of the recorded by the FFT of the sweep, with regularization.
func Deconvolve(sweep, recorded []float64) []float64 {
resultLen := len(recorded)
fftLen := nextPowerOfTwo(resultLen)
log.Printf("[deconvolve] sweep: %d, recorded: %d, resultLen: %d, fftLen: %d", len(sweep), len(recorded), resultLen, fftLen)
// Zero-pad both signals to fftLen
sweepPadded := make([]float64, fftLen)
recordedPadded := make([]float64, fftLen)
copy(sweepPadded, sweep)
copy(recordedPadded, recorded)
fft := fourier.NewFFT(fftLen)
sweepFFT := fft.Coefficients(nil, sweepPadded)
recordedFFT := fft.Coefficients(nil, recordedPadded)
log.Printf("[deconvolve] sweepFFT length: %d, recordedFFT length: %d", len(sweepFFT), len(recordedFFT))
// Regularization epsilon to avoid division by zero
const epsilon = 1e-10
minLen := len(sweepFFT)
if len(recordedFFT) < minLen {
minLen = len(recordedFFT)
}
irFFT := make([]complex128, minLen)
for i := 0; i < minLen; i++ {
denom := sweepFFT[i]
if cmplx.Abs(denom) < epsilon {
denom = complex(epsilon, 0)
}
irFFT[i] = recordedFFT[i] / denom
}
irTime := fft.Sequence(nil, irFFT)
log.Printf("[deconvolve] irTime length: %d", len(irTime))
// Defensive: avoid index out of range
copyLen := resultLen
if len(irTime) < resultLen {
log.Printf("[deconvolve] Warning: irTime length (%d) < resultLen (%d), truncating resultLen", len(irTime), resultLen)
copyLen = len(irTime)
}
result := make([]float64, copyLen)
copy(result, irTime[:copyLen])
return result
}
// Normalize normalizes the audio data to prevent clipping
// targetPeak is the maximum peak value (e.g., 0.95 for 95% of full scale)
func Normalize(data []float64, targetPeak float64) []float64 {
if len(data) == 0 {
return data
}
// Find the maximum absolute value
maxVal := 0.0
for _, sample := range data {
absVal := math.Abs(sample)
if absVal > maxVal {
maxVal = absVal
}
}
if maxVal == 0 {
return data
}
// Calculate normalization factor
normFactor := targetPeak / maxVal
// Apply normalization
normalized := make([]float64, len(data))
for i, sample := range data {
normalized[i] = sample * normFactor
}
return normalized
}
// TrimSilence removes leading and trailing silence from the audio data
// threshold is the amplitude threshold below which samples are considered silence
func TrimSilence(data []float64, threshold float64) []float64 {
if len(data) == 0 {
return data
}
// Find start (first non-silent sample)
start := 0
for i, sample := range data {
if math.Abs(sample) > threshold {
start = i
break
}
}
// Find end (last non-silent sample)
end := len(data) - 1
for i := len(data) - 1; i >= 0; i-- {
if math.Abs(data[i]) > threshold {
end = i
break
}
}
if start >= end {
return []float64{}
}
return data[start : end+1]
}
// TrimOrPad trims or zero-pads the data to the specified number of samples
func TrimOrPad(data []float64, targetSamples int) []float64 {
if len(data) == targetSamples {
return data
} else if len(data) > targetSamples {
return data[:targetSamples]
} else {
out := make([]float64, targetSamples)
copy(out, data)
// zero-padding is default
return out
}
}
// padOrTruncate ensures a slice is exactly n elements long
func padOrTruncate[T any](in []T, n int) []T {
if len(in) == n {
return in
} else if len(in) > n {
return in[:n]
}
out := make([]T, n)
copy(out, in)
return out
}
// Helper to reconstruct full Hermitian spectrum from N/2+1 real FFT
func hermitianSymmetric(fullLen int, halfSpec []complex128) []complex128 {
full := make([]complex128, fullLen)
N := fullLen
// DC
full[0] = halfSpec[0]
// Positive freqs
for k := 1; k < N/2; k++ {
full[k] = halfSpec[k]
full[N-k] = cmplx.Conj(halfSpec[k])
}
// Nyquist (if even)
if N%2 == 0 {
full[N/2] = halfSpec[N/2]
}
return full
}
// MinimumPhaseTransform using go-dsp/fft for full complex FFT/IFFT
func MinimumPhaseTransform(ir []float64) []float64 {
if len(ir) == 0 {
return ir
}
origLen := len(ir)
fftLen := nextPowerOfTwo(origLen)
padded := padOrTruncate(ir, fftLen)
log.Printf("[MPT] fftLen: %d, padded len: %d", fftLen, len(padded))
// Convert to complex
signal := make([]complex128, fftLen)
for i, v := range padded {
signal[i] = complex(v, 0)
}
// FFT
X := fft.FFT(signal)
// Log-magnitude spectrum (complex)
logMag := make([]complex128, fftLen)
for i, v := range X {
mag := cmplx.Abs(v)
if mag < 1e-12 {
mag = 1e-12
}
logMag[i] = complex(math.Log(mag), 0)
}
// IFFT to get real cepstrum
cepstrumC := fft.IFFT(logMag)
// Minimum phase cepstrum
minPhaseCep := make([]complex128, fftLen)
minPhaseCep[0] = cepstrumC[0] // DC
for i := 1; i < fftLen/2; i++ {
minPhaseCep[i] = 2 * cepstrumC[i]
}
if fftLen%2 == 0 {
minPhaseCep[fftLen/2] = cepstrumC[fftLen/2] // Nyquist (if even)
}
// Negative quefrency: zero (already zero by default)
// FFT of minimum phase cepstrum
minPhaseSpec := fft.FFT(minPhaseCep)
// Exponentiate to get minimum phase spectrum
for i := range minPhaseSpec {
minPhaseSpec[i] = cmplx.Exp(minPhaseSpec[i])
}
// IFFT to get minimum phase IR
minPhaseIR := fft.IFFT(minPhaseSpec)
// Return the real part, original length
result := make([]float64, origLen)
for i := range result {
result[i] = real(minPhaseIR[i])
}
return result
}
// realSlice extracts the real part of a []complex128 as []float64
func realSlice(in []complex128) []float64 {
out := make([]float64, len(in))
for i, v := range in {
out[i] = real(v)
}
return out
}
// Resample resamples audio data from one sample rate to another using linear interpolation
func Resample(data []float64, fromSampleRate, toSampleRate int) []float64 {
if fromSampleRate == toSampleRate {
return data
}
// Calculate the resampling ratio
ratio := float64(toSampleRate) / float64(fromSampleRate)
newLength := int(float64(len(data)) * ratio)
if newLength == 0 {
return []float64{}
}
result := make([]float64, newLength)
for i := 0; i < newLength; i++ {
// Calculate the position in the original data
pos := float64(i) / ratio
// Get the integer and fractional parts
posInt := int(pos)
posFrac := pos - float64(posInt)
// Linear interpolation
if posInt >= len(data)-1 {
// Beyond the end of the data, use the last sample
result[i] = data[len(data)-1]
} else {
// Interpolate between two samples
sample1 := data[posInt]
sample2 := data[posInt+1]
result[i] = sample1 + posFrac*(sample2-sample1)
}
}
return result
}

104
pkg/wav/reader.go Normal file
View File

@@ -0,0 +1,104 @@
package wav
import (
"fmt"
"os"
"valhallir-convoluter/pkg/convolve"
"github.com/go-audio/audio"
"github.com/go-audio/wav"
)
// WAVData represents the PCM data and metadata from a WAV file
type WAVData struct {
SampleRate int
BitDepth int
Channels int
PCMData []float64
}
// toMono averages all channels to mono
func toMono(data []float64, channels int) []float64 {
if channels == 1 {
return data
}
mono := make([]float64, len(data)/channels)
for i := 0; i < len(mono); i++ {
sum := 0.0
for c := 0; c < channels; c++ {
sum += data[i*channels+c]
}
mono[i] = sum / float64(channels)
}
return mono
}
// ReadWAVFile reads a WAV file and returns its PCM data as float64 (resampled to 96kHz mono)
func ReadWAVFile(filePath string) (*WAVData, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, fmt.Errorf("failed to open file %s: %w", filePath, err)
}
defer file.Close()
decoder := wav.NewDecoder(file)
if !decoder.IsValidFile() {
return nil, fmt.Errorf("file %s is not a valid WAV file", filePath)
}
// Read all PCM data
var pcmData []int32
buf := &audio.IntBuffer{Data: make([]int, 4096), Format: &audio.Format{SampleRate: int(decoder.SampleRate), NumChannels: int(decoder.NumChans)}}
for {
n, err := decoder.PCMBuffer(buf)
if err != nil {
break
}
if n == 0 {
break
}
// Convert int samples to float64
for i := 0; i < n; i++ {
pcmData = append(pcmData, int32(buf.Data[i]))
}
}
// Convert int32 to float64 (-1.0 to 1.0 range, scale by bit depth)
floatData := make([]float64, len(pcmData))
var norm float64
if decoder.BitDepth == 16 {
norm = float64(1 << 15)
} else if decoder.BitDepth == 24 {
norm = float64(1 << 23)
} else if decoder.BitDepth == 32 {
norm = float64(1 << 31)
} else {
norm = float64(1 << 23) // fallback
}
for i, sample := range pcmData {
floatData[i] = float64(sample) / norm
}
// Convert to mono if needed
channels := int(decoder.NumChans)
if channels > 1 {
floatData = toMono(floatData, channels)
channels = 1
}
// Resample to 96kHz if needed
inSampleRate := int(decoder.SampleRate)
if inSampleRate != 96000 {
floatData = convolve.Resample(floatData, inSampleRate, 96000)
}
return &WAVData{
SampleRate: 96000,
BitDepth: int(decoder.BitDepth), // original bit depth
Channels: 1,
PCMData: floatData,
}, nil
}

90
pkg/wav/writer.go Normal file
View File

@@ -0,0 +1,90 @@
package wav
import (
"fmt"
"os"
"github.com/go-audio/audio"
"github.com/go-audio/wav"
)
// WriteWAVFileWithOptions writes float64 audio data to a WAV file with specified sample rate and bit depth
func WriteWAVFileWithOptions(filePath string, data []float64, sampleRate, bitDepth int) error {
file, err := os.Create(filePath)
if err != nil {
return fmt.Errorf("failed to create file %s: %w", filePath, err)
}
defer file.Close()
// Convert float64 to appropriate integer format based on bit depth
var intData []int
switch bitDepth {
case 16:
intData = make([]int, len(data))
for i, sample := range data {
// Clamp to [-1, 1] range
if sample > 1.0 {
sample = 1.0
} else if sample < -1.0 {
sample = -1.0
}
// Convert to 16-bit integer
intSample := int(sample * float64(1<<15))
intData[i] = intSample
}
case 24:
intData = make([]int, len(data))
for i, sample := range data {
// Clamp to [-1, 1] range
if sample > 1.0 {
sample = 1.0
} else if sample < -1.0 {
sample = -1.0
}
// Convert to 24-bit integer
intSample := int(sample * float64(1<<23))
intData[i] = intSample
}
case 32:
intData = make([]int, len(data))
for i, sample := range data {
// Clamp to [-1, 1] range
if sample > 1.0 {
sample = 1.0
} else if sample < -1.0 {
sample = -1.0
}
// Convert to 32-bit integer
intSample := int(sample * float64(1<<31))
intData[i] = intSample
}
default:
return fmt.Errorf("unsupported bit depth: %d", bitDepth)
}
// Create audio buffer
audioBuf := &audio.IntBuffer{
Format: &audio.Format{
NumChannels: 1,
SampleRate: sampleRate,
},
Data: intData,
SourceBitDepth: bitDepth,
}
// Create WAV encoder
encoder := wav.NewEncoder(file, sampleRate, bitDepth, 1, 1)
defer encoder.Close()
// Write audio data
if err := encoder.Write(audioBuf); err != nil {
return fmt.Errorf("failed to write audio data: %w", err)
}
return nil
}
// WriteWAVFile writes float64 audio data to a 96kHz 24-bit WAV file (default format)
func WriteWAVFile(filePath string, data []float64, sampleRate int) error {
return WriteWAVFileWithOptions(filePath, data, sampleRate, 24)
}

BIN
testdata/ir_48k_32bit.wav vendored Normal file

Binary file not shown.

BIN
testdata/ir_48k_32bit_mpt.wav vendored Normal file

Binary file not shown.

BIN
testdata/recorded.wav vendored Normal file

Binary file not shown.

BIN
testdata/sweep.wav vendored Normal file

Binary file not shown.

BIN
valhallir-convoluter Executable file

Binary file not shown.