Files
valhallir-deconvolver/pkg/convolve/convolve.go

344 lines
8.6 KiB
Go

package convolve
import (
"log"
"math"
"math/cmplx"
"github.com/mjibson/go-dsp/fft"
"gonum.org/v1/gonum/dsp/fourier"
)
// nextPowerOfTwo returns the next power of two >= n
func nextPowerOfTwo(n int) int {
p := 1
for p < n {
p <<= 1
}
return p
}
// Convolve performs FFT-based convolution of two audio signals
// Deprecated: Use Deconvolve for IR extraction from sweep and recorded signals
func Convolve(signal1, signal2 []float64) []float64 {
resultLen := len(signal1) + len(signal2) - 1
fftLen := nextPowerOfTwo(resultLen)
log.Printf("[convolve] signal1: %d, signal2: %d, resultLen: %d, fftLen: %d", len(signal1), len(signal2), resultLen, fftLen)
// Zero-pad both signals to fftLen as float64
x := make([]float64, fftLen)
copy(x, signal1)
y := make([]float64, fftLen)
copy(y, signal2)
// FFT
fft := fourier.NewFFT(fftLen)
xFreq := fft.Coefficients(nil, x) // []complex128
yFreq := fft.Coefficients(nil, y) // []complex128
log.Printf("[convolve] xFreq length: %d, yFreq length: %d", len(xFreq), len(yFreq))
// Multiply in frequency domain
outFreq := make([]complex128, len(xFreq))
for i := 0; i < len(xFreq) && i < len(yFreq); i++ {
outFreq[i] = xFreq[i] * yFreq[i]
}
// Inverse FFT (returns []float64)
outTime := fft.Sequence(nil, outFreq)
log.Printf("[convolve] outTime length: %d", len(outTime))
// Defensive: avoid index out of range
copyLen := resultLen
if len(outTime) < resultLen {
log.Printf("[convolve] Warning: outTime length (%d) < resultLen (%d), truncating resultLen", len(outTime), resultLen)
copyLen = len(outTime)
}
result := make([]float64, copyLen)
copy(result, outTime[:copyLen])
return result
}
// Deconvolve extracts the impulse response (IR) from a sweep and its recorded version
// by dividing the FFT of the recorded by the FFT of the sweep, with regularization.
func Deconvolve(sweep, recorded []float64) []float64 {
resultLen := len(recorded)
fftLen := nextPowerOfTwo(resultLen)
log.Printf("[deconvolve] sweep: %d, recorded: %d, resultLen: %d, fftLen: %d", len(sweep), len(recorded), resultLen, fftLen)
// Zero-pad both signals to fftLen
sweepPadded := make([]float64, fftLen)
recordedPadded := make([]float64, fftLen)
copy(sweepPadded, sweep)
copy(recordedPadded, recorded)
fft := fourier.NewFFT(fftLen)
sweepFFT := fft.Coefficients(nil, sweepPadded)
recordedFFT := fft.Coefficients(nil, recordedPadded)
log.Printf("[deconvolve] sweepFFT length: %d, recordedFFT length: %d", len(sweepFFT), len(recordedFFT))
// Regularization epsilon to avoid division by zero
const epsilon = 1e-10
minLen := len(sweepFFT)
if len(recordedFFT) < minLen {
minLen = len(recordedFFT)
}
irFFT := make([]complex128, minLen)
for i := 0; i < minLen; i++ {
denom := sweepFFT[i]
if cmplx.Abs(denom) < epsilon {
denom = complex(epsilon, 0)
}
irFFT[i] = recordedFFT[i] / denom
}
irTime := fft.Sequence(nil, irFFT)
log.Printf("[deconvolve] irTime length: %d", len(irTime))
// Defensive: avoid index out of range
copyLen := resultLen
if len(irTime) < resultLen {
log.Printf("[deconvolve] Warning: irTime length (%d) < resultLen (%d), truncating resultLen", len(irTime), resultLen)
copyLen = len(irTime)
}
result := make([]float64, copyLen)
copy(result, irTime[:copyLen])
return result
}
// Normalize normalizes the audio data to prevent clipping
// targetPeak is the maximum peak value (e.g., 0.95 for 95% of full scale)
func Normalize(data []float64, targetPeak float64) []float64 {
if len(data) == 0 {
return data
}
// Find the maximum absolute value
maxVal := 0.0
for _, sample := range data {
absVal := math.Abs(sample)
if absVal > maxVal {
maxVal = absVal
}
}
if maxVal == 0 {
return data
}
// Calculate normalization factor
normFactor := targetPeak / maxVal
// Apply normalization
normalized := make([]float64, len(data))
for i, sample := range data {
normalized[i] = sample * normFactor
}
return normalized
}
// TrimSilence removes leading and trailing silence from the audio data
// threshold is the amplitude threshold below which samples are considered silence
func TrimSilence(data []float64, threshold float64) []float64 {
if len(data) == 0 {
return data
}
// Find start (first non-silent sample)
start := 0
for i, sample := range data {
if math.Abs(sample) > threshold {
start = i
break
}
}
// Find end (last non-silent sample)
end := len(data) - 1
for i := len(data) - 1; i >= 0; i-- {
if math.Abs(data[i]) > threshold {
end = i
break
}
}
if start >= end {
return []float64{}
}
return data[start : end+1]
}
// TrimOrPad trims or zero-pads the data to the specified number of samples
func TrimOrPad(data []float64, targetSamples int) []float64 {
if len(data) == targetSamples {
return data
} else if len(data) > targetSamples {
return data[:targetSamples]
} else {
out := make([]float64, targetSamples)
copy(out, data)
// zero-padding is default
return out
}
}
// padOrTruncate ensures a slice is exactly n elements long
func padOrTruncate[T any](in []T, n int) []T {
if len(in) == n {
return in
} else if len(in) > n {
return in[:n]
}
out := make([]T, n)
copy(out, in)
return out
}
// Helper to reconstruct full Hermitian spectrum from N/2+1 real FFT
func hermitianSymmetric(fullLen int, halfSpec []complex128) []complex128 {
full := make([]complex128, fullLen)
N := fullLen
// DC
full[0] = halfSpec[0]
// Positive freqs
for k := 1; k < N/2; k++ {
full[k] = halfSpec[k]
full[N-k] = cmplx.Conj(halfSpec[k])
}
// Nyquist (if even)
if N%2 == 0 {
full[N/2] = halfSpec[N/2]
}
return full
}
// MinimumPhaseTransform using go-dsp/fft for full complex FFT/IFFT
func MinimumPhaseTransform(ir []float64) []float64 {
if len(ir) == 0 {
return ir
}
origLen := len(ir)
fftLen := nextPowerOfTwo(origLen)
padded := padOrTruncate(ir, fftLen)
log.Printf("[MPT] fftLen: %d, padded len: %d", fftLen, len(padded))
// Convert to complex
signal := make([]complex128, fftLen)
for i, v := range padded {
signal[i] = complex(v, 0)
}
// FFT
X := fft.FFT(signal)
// Log-magnitude spectrum (complex)
logMag := make([]complex128, fftLen)
for i, v := range X {
mag := cmplx.Abs(v)
if mag < 1e-12 {
mag = 1e-12
}
logMag[i] = complex(math.Log(mag), 0)
}
// IFFT to get real cepstrum
cepstrumC := fft.IFFT(logMag)
// Minimum phase cepstrum
minPhaseCep := make([]complex128, fftLen)
minPhaseCep[0] = cepstrumC[0] // DC
for i := 1; i < fftLen/2; i++ {
minPhaseCep[i] = 2 * cepstrumC[i]
}
if fftLen%2 == 0 {
minPhaseCep[fftLen/2] = cepstrumC[fftLen/2] // Nyquist (if even)
}
// Negative quefrency: zero (already zero by default)
// FFT of minimum phase cepstrum
minPhaseSpec := fft.FFT(minPhaseCep)
// Exponentiate to get minimum phase spectrum
for i := range minPhaseSpec {
minPhaseSpec[i] = cmplx.Exp(minPhaseSpec[i])
}
// IFFT to get minimum phase IR
minPhaseIR := fft.IFFT(minPhaseSpec)
// Return the real part, original length
result := make([]float64, origLen)
for i := range result {
result[i] = real(minPhaseIR[i])
}
return result
}
// realSlice extracts the real part of a []complex128 as []float64
func realSlice(in []complex128) []float64 {
out := make([]float64, len(in))
for i, v := range in {
out[i] = real(v)
}
return out
}
// Resample resamples audio data from one sample rate to another using linear interpolation
func Resample(data []float64, fromSampleRate, toSampleRate int) []float64 {
if fromSampleRate == toSampleRate {
return data
}
// Calculate the resampling ratio
ratio := float64(toSampleRate) / float64(fromSampleRate)
newLength := int(float64(len(data)) * ratio)
if newLength == 0 {
return []float64{}
}
result := make([]float64, newLength)
for i := 0; i < newLength; i++ {
// Calculate the position in the original data
pos := float64(i) / ratio
// Get the integer and fractional parts
posInt := int(pos)
posFrac := pos - float64(posInt)
// Linear interpolation
if posInt >= len(data)-1 {
// Beyond the end of the data, use the last sample
result[i] = data[len(data)-1]
} else {
// Interpolate between two samples
sample1 := data[posInt]
sample2 := data[posInt+1]
result[i] = sample1 + posFrac*(sample2-sample1)
}
}
return result
}
// FadeOutLinear applies a linear fade-out to the last fadeSamples of the data.
// fadeSamples is the number of samples over which to fade to zero.
func FadeOutLinear(data []float64, fadeSamples int) []float64 {
if fadeSamples <= 0 || len(data) == 0 {
return data
}
if fadeSamples > len(data) {
fadeSamples = len(data)
}
out := make([]float64, len(data))
copy(out, data)
start := len(data) - fadeSamples
for i := start; i < len(data); i++ {
fade := float64(len(data)-i) / float64(fadeSamples)
out[i] *= fade
}
return out
}