Compare commits

...

2 Commits

5 changed files with 171 additions and 1 deletions

View File

@@ -7,6 +7,7 @@ A CLI tool for processing WAV files to generate impulse responses (IR) from swee
- **Fast FFT-based deconvolution** for accurate IR extraction
- **Automatic input conversion:** Accepts any WAV sample rate, bit depth, or channel count
- **Optional output IR length:** Specify output IR length in milliseconds with --length-ms
- **Optional low-cut and high-cut filtering:** Apply Butterworth filters to the recorded sweep before IR extraction (--lowcut, --highcut, --cut-slope)
- **Automatic fade-out:** Linear fade-out at the end of the IR to avoid clicks (default 5 ms, configurable with --fade-ms)
- **96kHz 24-bit WAV file support** for high-quality audio processing
- **Multiple output formats** with configurable sample rates and bit depths
@@ -68,6 +69,24 @@ By default, a 5 ms linear fade-out is applied to the end of the IR to avoid clic
This applies a 10 ms fade-out at the end of the IR.
### Filtering the Recorded Sweep
You can apply a low-cut (high-pass) and/or high-cut (low-pass) filter to the recorded sweep before IR extraction. This is useful for removing rumble, DC, or high-frequency noise:
```sh
./valhallir-deconvolver --sweep sweep.wav --recorded recorded.wav --output ir.wav --lowcut 40 --highcut 18000
```
This applies a 40 Hz low-cut (high-pass) and 18 kHz high-cut (low-pass) filter to the recorded sweep.
You can control the filter steepness (slope) with `--cut-slope` (in dB/octave, default 12). For example:
```sh
./valhallir-deconvolver --sweep sweep.wav --recorded recorded.wav --output ir.wav --lowcut 40 --highcut 18000 --cut-slope 24
```
This applies a 40 Hz low-cut and 18 kHz high-cut, both with a 24 dB/octave slope (steeper than the default 12).
### Different Output Formats
Generate IRs in different sample rates and bit depths:
@@ -128,6 +147,9 @@ Generate IRs in different sample rates and bit depths:
| `--trim-threshold` | Silence threshold for trimming (0.0-1.0) | 0.001 | No |
| `--length-ms` | Output IR length in milliseconds (trim or zero-pad) | - | No |
| `--fade-ms` | Fade-out duration in milliseconds at end of IR (default 5) | 5 | No |
| `--lowcut` | Low-cut filter (high-pass) cutoff frequency in Hz (recorded sweep) | - | No |
| `--highcut` | High-cut filter (low-pass) cutoff frequency in Hz (recorded sweep) | - | No |
| `--cut-slope` | Filter slope in dB/octave (12, 24, 36, ...; default 12) | 12 | No |
## File Requirements
@@ -159,6 +181,11 @@ Generate IRs in different sample rates and bit depths:
- By default, a 5 ms linear fade-out is applied to the end of the IR (and MPT IR) to avoid clicks
- You can change the fade duration with `--fade-ms`
### Filtering
- You can apply a Butterworth low-cut (high-pass) and/or high-cut (low-pass) filter to the recorded sweep before IR extraction
- Use `--lowcut` and/or `--highcut` to specify cutoff frequencies in Hz
- Use `--cut-slope` to control the filter steepness (12 dB/octave = gentle, 24+ = steeper)
### Deconvolution Process
1. **FFT-based deconvolution** of recorded signal by sweep signal
2. **Regularization** to prevent division by zero

33
main.go
View File

@@ -65,6 +65,19 @@ func main() {
Usage: "Fade-out duration in milliseconds to apply at the end of the IR (default 5)",
Value: 5.0,
},
&cli.Float64Flag{
Name: "highcut",
Usage: "High-cut filter (low-pass) cutoff frequency in Hz (applied to recorded sweep, optional)",
},
&cli.Float64Flag{
Name: "lowcut",
Usage: "Low-cut filter (high-pass) cutoff frequency in Hz (applied to recorded sweep, optional)",
},
&cli.IntFlag{
Name: "cut-slope",
Usage: "Cut filter slope in dB/octave (12, 24, 36, 48, ...; default 12)",
Value: 12,
},
},
Action: func(c *cli.Context) error {
// Read sweep WAV file
@@ -82,8 +95,26 @@ func main() {
log.Printf("Sweep: %d samples, %d channels", len(sweepData.PCMData), sweepData.Channels)
log.Printf("Recorded: %d samples, %d channels", len(recordedData.PCMData), recordedData.Channels)
// Optionally filter the recorded sweep
recordedFiltered := recordedData.PCMData
recSampleRate := recordedData.SampleRate
highcutHz := c.Float64("highcut")
lowcutHz := c.Float64("lowcut")
cutSlope := c.Int("cut-slope")
if cutSlope < 12 || cutSlope%12 != 0 {
return fmt.Errorf("cut-slope must be a positive multiple of 12 (got %d)", cutSlope)
}
if lowcutHz > 0 {
log.Printf("Applying low-cut (high-pass) filter to recorded sweep: %.2f Hz, slope: %d dB/oct", lowcutHz, cutSlope)
recordedFiltered = convolve.CascadeLowcut(recordedFiltered, recSampleRate, lowcutHz, cutSlope)
}
if highcutHz > 0 {
log.Printf("Applying high-cut (low-pass) filter to recorded sweep: %.2f Hz, slope: %d dB/oct", highcutHz, cutSlope)
recordedFiltered = convolve.CascadeHighcut(recordedFiltered, recSampleRate, highcutHz, cutSlope)
}
log.Println("Performing deconvolution...")
ir := convolve.Deconvolve(sweepData.PCMData, recordedData.PCMData)
ir := convolve.Deconvolve(sweepData.PCMData, recordedFiltered)
log.Printf("Deconvolution result: %d samples", len(ir))
log.Println("Trimming silence...")

View File

@@ -341,3 +341,115 @@ func FadeOutLinear(data []float64, fadeSamples int) []float64 {
}
return out
}
// ApplyLowpassButterworth applies a 2nd-order Butterworth low-pass filter to the data.
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
func ApplyLowpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
return data
}
// Biquad coefficients
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
cosw0 := math.Cos(w0)
sinw0 := math.Sin(w0)
Q := 1.0 / math.Sqrt(2) // Butterworth Q
alpha := sinw0 / (2 * Q)
b0 := (1 - cosw0) / 2
b1 := 1 - cosw0
b2 := (1 - cosw0) / 2
a0 := 1 + alpha
a1 := -2 * cosw0
a2 := 1 - alpha
// Normalize
b0 /= a0
b1 /= a0
b2 /= a0
a1 /= a0
a2 /= a0
// Apply filter (Direct Form I)
out := make([]float64, len(data))
var x1, x2, y1, y2 float64
for i := 0; i < len(data); i++ {
x0 := data[i]
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
out[i] = y0
x2 = x1
x1 = x0
y2 = y1
y1 = y0
}
return out
}
// ApplyHighpassButterworth applies a 2nd-order Butterworth high-pass filter to the data.
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
func ApplyHighpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
return data
}
// Biquad coefficients
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
cosw0 := math.Cos(w0)
sinw0 := math.Sin(w0)
Q := 1.0 / math.Sqrt(2) // Butterworth Q
alpha := sinw0 / (2 * Q)
b0 := (1 + cosw0) / 2
b1 := -(1 + cosw0)
b2 := (1 + cosw0) / 2
a0 := 1 + alpha
a1 := -2 * cosw0
a2 := 1 - alpha
// Normalize
b0 /= a0
b1 /= a0
b2 /= a0
a1 /= a0
a2 /= a0
// Apply filter (Direct Form I)
out := make([]float64, len(data))
var x1, x2, y1, y2 float64
for i := 0; i < len(data); i++ {
x0 := data[i]
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
out[i] = y0
x2 = x1
x1 = x0
y2 = y1
y1 = y0
}
return out
}
// CascadeLowcut applies the low-cut (high-pass) filter multiple times for steeper slopes.
// slopeDb: 12, 24, 36, ... (dB/octave)
func CascadeLowcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
if slopeDb < 12 {
slopeDb = 12
}
n := slopeDb / 12
out := data
for i := 0; i < n; i++ {
out = ApplyHighpassButterworth(out, sampleRate, cutoffHz)
}
return out
}
// CascadeHighcut applies the high-cut (low-pass) filter multiple times for steeper slopes.
// slopeDb: 12, 24, 36, ... (dB/octave)
func CascadeHighcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
if slopeDb < 12 {
slopeDb = 12
}
n := slopeDb / 12
out := data
for i := 0; i < n; i++ {
out = ApplyLowpassButterworth(out, sampleRate, cutoffHz)
}
return out
}

BIN
testdata/ir.wav vendored

Binary file not shown.

BIN
testdata/ir_mpt.wav vendored Normal file

Binary file not shown.