Compare commits
2 Commits
a113550aee
...
8d9afb4fc6
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8d9afb4fc6 | ||
|
|
0cb60d884c |
27
README.md
27
README.md
@@ -7,6 +7,7 @@ A CLI tool for processing WAV files to generate impulse responses (IR) from swee
|
||||
- **Fast FFT-based deconvolution** for accurate IR extraction
|
||||
- **Automatic input conversion:** Accepts any WAV sample rate, bit depth, or channel count
|
||||
- **Optional output IR length:** Specify output IR length in milliseconds with --length-ms
|
||||
- **Optional low-cut and high-cut filtering:** Apply Butterworth filters to the recorded sweep before IR extraction (--lowcut, --highcut, --cut-slope)
|
||||
- **Automatic fade-out:** Linear fade-out at the end of the IR to avoid clicks (default 5 ms, configurable with --fade-ms)
|
||||
- **96kHz 24-bit WAV file support** for high-quality audio processing
|
||||
- **Multiple output formats** with configurable sample rates and bit depths
|
||||
@@ -68,6 +69,24 @@ By default, a 5 ms linear fade-out is applied to the end of the IR to avoid clic
|
||||
|
||||
This applies a 10 ms fade-out at the end of the IR.
|
||||
|
||||
### Filtering the Recorded Sweep
|
||||
|
||||
You can apply a low-cut (high-pass) and/or high-cut (low-pass) filter to the recorded sweep before IR extraction. This is useful for removing rumble, DC, or high-frequency noise:
|
||||
|
||||
```sh
|
||||
./valhallir-deconvolver --sweep sweep.wav --recorded recorded.wav --output ir.wav --lowcut 40 --highcut 18000
|
||||
```
|
||||
|
||||
This applies a 40 Hz low-cut (high-pass) and 18 kHz high-cut (low-pass) filter to the recorded sweep.
|
||||
|
||||
You can control the filter steepness (slope) with `--cut-slope` (in dB/octave, default 12). For example:
|
||||
|
||||
```sh
|
||||
./valhallir-deconvolver --sweep sweep.wav --recorded recorded.wav --output ir.wav --lowcut 40 --highcut 18000 --cut-slope 24
|
||||
```
|
||||
|
||||
This applies a 40 Hz low-cut and 18 kHz high-cut, both with a 24 dB/octave slope (steeper than the default 12).
|
||||
|
||||
### Different Output Formats
|
||||
|
||||
Generate IRs in different sample rates and bit depths:
|
||||
@@ -128,6 +147,9 @@ Generate IRs in different sample rates and bit depths:
|
||||
| `--trim-threshold` | Silence threshold for trimming (0.0-1.0) | 0.001 | No |
|
||||
| `--length-ms` | Output IR length in milliseconds (trim or zero-pad) | - | No |
|
||||
| `--fade-ms` | Fade-out duration in milliseconds at end of IR (default 5) | 5 | No |
|
||||
| `--lowcut` | Low-cut filter (high-pass) cutoff frequency in Hz (recorded sweep) | - | No |
|
||||
| `--highcut` | High-cut filter (low-pass) cutoff frequency in Hz (recorded sweep) | - | No |
|
||||
| `--cut-slope` | Filter slope in dB/octave (12, 24, 36, ...; default 12) | 12 | No |
|
||||
|
||||
## File Requirements
|
||||
|
||||
@@ -159,6 +181,11 @@ Generate IRs in different sample rates and bit depths:
|
||||
- By default, a 5 ms linear fade-out is applied to the end of the IR (and MPT IR) to avoid clicks
|
||||
- You can change the fade duration with `--fade-ms`
|
||||
|
||||
### Filtering
|
||||
- You can apply a Butterworth low-cut (high-pass) and/or high-cut (low-pass) filter to the recorded sweep before IR extraction
|
||||
- Use `--lowcut` and/or `--highcut` to specify cutoff frequencies in Hz
|
||||
- Use `--cut-slope` to control the filter steepness (12 dB/octave = gentle, 24+ = steeper)
|
||||
|
||||
### Deconvolution Process
|
||||
1. **FFT-based deconvolution** of recorded signal by sweep signal
|
||||
2. **Regularization** to prevent division by zero
|
||||
|
||||
33
main.go
33
main.go
@@ -65,6 +65,19 @@ func main() {
|
||||
Usage: "Fade-out duration in milliseconds to apply at the end of the IR (default 5)",
|
||||
Value: 5.0,
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "highcut",
|
||||
Usage: "High-cut filter (low-pass) cutoff frequency in Hz (applied to recorded sweep, optional)",
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "lowcut",
|
||||
Usage: "Low-cut filter (high-pass) cutoff frequency in Hz (applied to recorded sweep, optional)",
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "cut-slope",
|
||||
Usage: "Cut filter slope in dB/octave (12, 24, 36, 48, ...; default 12)",
|
||||
Value: 12,
|
||||
},
|
||||
},
|
||||
Action: func(c *cli.Context) error {
|
||||
// Read sweep WAV file
|
||||
@@ -82,8 +95,26 @@ func main() {
|
||||
log.Printf("Sweep: %d samples, %d channels", len(sweepData.PCMData), sweepData.Channels)
|
||||
log.Printf("Recorded: %d samples, %d channels", len(recordedData.PCMData), recordedData.Channels)
|
||||
|
||||
// Optionally filter the recorded sweep
|
||||
recordedFiltered := recordedData.PCMData
|
||||
recSampleRate := recordedData.SampleRate
|
||||
highcutHz := c.Float64("highcut")
|
||||
lowcutHz := c.Float64("lowcut")
|
||||
cutSlope := c.Int("cut-slope")
|
||||
if cutSlope < 12 || cutSlope%12 != 0 {
|
||||
return fmt.Errorf("cut-slope must be a positive multiple of 12 (got %d)", cutSlope)
|
||||
}
|
||||
if lowcutHz > 0 {
|
||||
log.Printf("Applying low-cut (high-pass) filter to recorded sweep: %.2f Hz, slope: %d dB/oct", lowcutHz, cutSlope)
|
||||
recordedFiltered = convolve.CascadeLowcut(recordedFiltered, recSampleRate, lowcutHz, cutSlope)
|
||||
}
|
||||
if highcutHz > 0 {
|
||||
log.Printf("Applying high-cut (low-pass) filter to recorded sweep: %.2f Hz, slope: %d dB/oct", highcutHz, cutSlope)
|
||||
recordedFiltered = convolve.CascadeHighcut(recordedFiltered, recSampleRate, highcutHz, cutSlope)
|
||||
}
|
||||
|
||||
log.Println("Performing deconvolution...")
|
||||
ir := convolve.Deconvolve(sweepData.PCMData, recordedData.PCMData)
|
||||
ir := convolve.Deconvolve(sweepData.PCMData, recordedFiltered)
|
||||
log.Printf("Deconvolution result: %d samples", len(ir))
|
||||
|
||||
log.Println("Trimming silence...")
|
||||
|
||||
@@ -341,3 +341,115 @@ func FadeOutLinear(data []float64, fadeSamples int) []float64 {
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// ApplyLowpassButterworth applies a 2nd-order Butterworth low-pass filter to the data.
|
||||
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
|
||||
func ApplyLowpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
|
||||
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
|
||||
return data
|
||||
}
|
||||
// Biquad coefficients
|
||||
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
|
||||
cosw0 := math.Cos(w0)
|
||||
sinw0 := math.Sin(w0)
|
||||
Q := 1.0 / math.Sqrt(2) // Butterworth Q
|
||||
alpha := sinw0 / (2 * Q)
|
||||
|
||||
b0 := (1 - cosw0) / 2
|
||||
b1 := 1 - cosw0
|
||||
b2 := (1 - cosw0) / 2
|
||||
a0 := 1 + alpha
|
||||
a1 := -2 * cosw0
|
||||
a2 := 1 - alpha
|
||||
|
||||
// Normalize
|
||||
b0 /= a0
|
||||
b1 /= a0
|
||||
b2 /= a0
|
||||
a1 /= a0
|
||||
a2 /= a0
|
||||
|
||||
// Apply filter (Direct Form I)
|
||||
out := make([]float64, len(data))
|
||||
var x1, x2, y1, y2 float64
|
||||
for i := 0; i < len(data); i++ {
|
||||
x0 := data[i]
|
||||
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
|
||||
out[i] = y0
|
||||
x2 = x1
|
||||
x1 = x0
|
||||
y2 = y1
|
||||
y1 = y0
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// ApplyHighpassButterworth applies a 2nd-order Butterworth high-pass filter to the data.
|
||||
// cutoffHz: cutoff frequency in Hz, sampleRate: sample rate in Hz.
|
||||
func ApplyHighpassButterworth(data []float64, sampleRate int, cutoffHz float64) []float64 {
|
||||
if cutoffHz <= 0 || cutoffHz >= float64(sampleRate)/2 {
|
||||
return data
|
||||
}
|
||||
// Biquad coefficients
|
||||
w0 := 2 * math.Pi * cutoffHz / float64(sampleRate)
|
||||
cosw0 := math.Cos(w0)
|
||||
sinw0 := math.Sin(w0)
|
||||
Q := 1.0 / math.Sqrt(2) // Butterworth Q
|
||||
alpha := sinw0 / (2 * Q)
|
||||
|
||||
b0 := (1 + cosw0) / 2
|
||||
b1 := -(1 + cosw0)
|
||||
b2 := (1 + cosw0) / 2
|
||||
a0 := 1 + alpha
|
||||
a1 := -2 * cosw0
|
||||
a2 := 1 - alpha
|
||||
|
||||
// Normalize
|
||||
b0 /= a0
|
||||
b1 /= a0
|
||||
b2 /= a0
|
||||
a1 /= a0
|
||||
a2 /= a0
|
||||
|
||||
// Apply filter (Direct Form I)
|
||||
out := make([]float64, len(data))
|
||||
var x1, x2, y1, y2 float64
|
||||
for i := 0; i < len(data); i++ {
|
||||
x0 := data[i]
|
||||
y0 := b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2
|
||||
out[i] = y0
|
||||
x2 = x1
|
||||
x1 = x0
|
||||
y2 = y1
|
||||
y1 = y0
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// CascadeLowcut applies the low-cut (high-pass) filter multiple times for steeper slopes.
|
||||
// slopeDb: 12, 24, 36, ... (dB/octave)
|
||||
func CascadeLowcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
|
||||
if slopeDb < 12 {
|
||||
slopeDb = 12
|
||||
}
|
||||
n := slopeDb / 12
|
||||
out := data
|
||||
for i := 0; i < n; i++ {
|
||||
out = ApplyHighpassButterworth(out, sampleRate, cutoffHz)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// CascadeHighcut applies the high-cut (low-pass) filter multiple times for steeper slopes.
|
||||
// slopeDb: 12, 24, 36, ... (dB/octave)
|
||||
func CascadeHighcut(data []float64, sampleRate int, cutoffHz float64, slopeDb int) []float64 {
|
||||
if slopeDb < 12 {
|
||||
slopeDb = 12
|
||||
}
|
||||
n := slopeDb / 12
|
||||
out := data
|
||||
for i := 0; i < n; i++ {
|
||||
out = ApplyLowpassButterworth(out, sampleRate, cutoffHz)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
BIN
testdata/ir.wav
vendored
BIN
testdata/ir.wav
vendored
Binary file not shown.
BIN
testdata/ir_mpt.wav
vendored
Normal file
BIN
testdata/ir_mpt.wav
vendored
Normal file
Binary file not shown.
Reference in New Issue
Block a user